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Course Title: Geometrical Optics 

 

Optics is the cornerstone of photonics systems and applications. In this 

module, you will learn about one of the two main divisions of basic 

optics—geometrical (ray) optics. In 1the module to follow, you will learn 

about the other—physical (wave) optics. Geometrical optics will help you 

understand the basics of light reflection and refraction and the use of 

simple optical elements such as mirrors, prisms, lenses, and fibers. 

Physical optics will help you understand the phenomena of light wave  

interference, diffraction, and polarization; the use of thin film coatings on 

mirrors to enhance or suppress reflection; and the operation of such 

devices as gratings and quarter-wave plates. 
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CHAPTER ONE 
 

REFLECTION AND REFRACTION 

 

THE LAWS OF REFLECTION AND REFRACTION 

We begin our study of basic geometrical optics by examining how light 

reflects and refracts at    smooth, plane interfaces. Figure 1-1a shows 

ordinary reflection of light at a plane surface, and    Figure 1-1b shows 

refraction of light at two successive plane surfaces. In each instance, light 

is    pictured simply in terms of straight lines, which we refer to as light 

rays.       

 

 

 

Figure 1-1 Light rays undergoing reflection and refraction at plane 

surfaces 

 

After a study of how light reflects and refracts at plane surfaces, we 

extend our analysis to smooth, curved surfaces, thereby setting the stage 

for light interaction with mirrors and lenses the basic elements in many 

optical systems  

 Reflection of light from optical surfaces  When light is incident on an 

interface between two transparent optical media—such as between air 
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and glass or between water and glass—four things can happen to the 

incident light. 

• It can be partly or totally reflected at the interface. 

• It can be scattered in random directions at the interface. 

• It can be partly transmitted via refraction at the interface and enter the 

second medium. 

• It can be partly absorbed in either medium. 

In our introductory study of geometrical optics we shall consider only 

smooth surfaces that give rise to specular (regular, geometric) reflections 

(Figure 1-4a) and ignore ragged, uneven surfaces that give rise to diffuse 

(irregular) reflections (Figure 1-4b).  

 

 

 

 

Figure 1-4 Specular and diffuse reflection 

In addition, we shall ignore absorption of light energy along the path of 

travel, even though absorption is an important consideration when 

percentage of light transmitted from source to receiver is a factor of 

concern in optical systems. 

The law of reflection: plane surface. When light reflects from a plane 

surface as shown in Figure 3-5, the angle that the reflected ray makes 

with the normal (line perpendicular to the     surface) at the point of 

incidence is always equal to the angle the incident ray makes with the 
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same normal. Note carefully that the incident ray, reflected ray, and 

normal always lie in the same plane. 

 

 

Figure -5 Law of reflection: Angle B equals angle A. 

The geometry of Figure 1-5 reminds us that reflection of light rays from a 

plane, smooth surface   is like the geometry of pool shots “banked” along 

the wall of a billiard table.  With the law of reflection in mind, we can see 

that, for the specular reflection shown earlier in Figure 1-4a, each of the 

incident, parallel rays reflects off the surface at the same angle, thereby 

remaining parallel in reflection as a group. In Figure 1-4b, where the 

surface is made up of      many small, randomly oriented plane surfaces, 

each ray reflects in a direction different from its   neighbor, even though 

each ray does obey the law of reflection at its own small surface segment. 

 

Reflection from a curved surface.  With spherical mirrors, reflection of 

light occurs at a curved surface. The law of reflection holds, since at each 

point on the curved surface one can draw a surface tangent and erect a 

normal to a point P on the surface where the light is incident,  as shown 

in Figure 1-6. One then applies the law of reflection at point P just as was 

illustrated in Figure 1-5, with the incident and reflected rays making the 
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same angles (A and B) with the  normal to the surface at P. Note that 

successive surface tangents along the curved surface in Figure 1-6 are 

ordered (not random) sections of “plane mirrors” and serve—when 

smoothly connected—as a spherical surface mirror, capable of forming 

distinct images. 

 

Since point P can be moved anywhere along the curved surface and a 

normal drawn there, we can always find the direction of the reflected ray 

by applying the law of  reflection. We shall apply this technique when 

studying the way mirrors reflect light from the image. 

 

 

Figure 1-6 Reflection at a curved surface: Angle B equals angle A 

Index of refraction. The two transparent optical media that form an 

interface are distinguished from one another by a constant called the 

index of refraction, generally labeled with the symbol n. The index of 

refraction for any transparent optical medium is defined as the ratio of the 

speed of light in a vacuum to the speed of light in the medium, as given in 

Equation 1-1 
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where c = speed of light in free space (vacuum) 

v = speed of light in the medium 

n = index of refraction of the medium 

The index of refraction for free space is exactly one. For air and most 

gases it is very nearly one, so in most calculations it is taken to be 1.0. 

For other materials it has values greater than one. Table 1-1 lists indexes 

of refraction for common materials. 

 

Table 1-1 Indexes of Refraction for Various Materials at 589 nm 

 

The greater the index of refraction of a medium, the lower the speed of 

light in that medium and the more light is bent in going from air into the 

medium. Figure 1-7shows two general cases, one for light passing from a 

medium of lower index to higher index, the other from higher index to 

lower index. Note that in the first case (lower-to-higher) the light ray is 

bent toward the   normal. In the second case (higher-to-lower) the light 

ray is bent away from the normal. It is helpful to memorize these effects 

since they often help one trace light through optical media in a generally 

correct manner. 
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Figure 1-7 Refraction at an interface between media of refractive indexes 

n1 and n2 

 

 Snell’s law. Snell’s law of refraction relates the sines of the angles of 

incidence and refraction at an interface between two optical media to the 

indexes of refraction of the two media. The law is named after a Dutch 

astronomer, Willebrord Snell, who formulated the law in the 17th 

century. Snell’s law enables us to calculate the direction of the refracted 

ray if we know   the refractive indexes of the two media and the direction 

of the incident ray. The mathematical expression of Snell’s law and an 

accompanying drawing are given in Figure 1-8. 

 

 

 

Figure 1-8 Snell’s law: formula and geometry 
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Note carefully that both the angle of incidence (i) and refraction (r) are 

measured with respect to the surface normal. Note also that the incident 

ray, normal, and refracted ray all lie in the same geometrical plane.  In 

practice Snell’s law is often written simply as equation 1-2 

 

 

 

Now let’s look at an example that make use of Snell’s law. 

 

Example 1 

In a handheld optical instrument used under water, light is incident from 

water onto the plane 

surface of flint glass at an angle of incidence of 45°. 

(a) What is the angle of reflection of light off the flint glass? 

(b) Does the refracted ray bend toward or away from the normal? 

(c) What is the angle of refraction in the flint glass? 

 

Solution: 

(a) From the law of reflection, the reflected light must head off at an 

angle of 45° with the normal. (Note: The angle of reflection is not 

dependent on the refractive indexes of the two media.)  

(b) From Table 1-1, the index of refraction is 1.33 for water and 1.63 for 

flint glass. Thus, light is moving from a lower to a higher index of 

refraction and will bend toward the normal. 

We know then that the angle of refraction r should be less than 45°. 

(c) From Snell’s law, Equation 3-2, we have: 

 

ni sin i = nr sin r 
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where ni = 1.33, i = 45°, and ni = 1.63 

 

 

 

 

 

The angle of refraction is about 35°, clearly less than 45°, just as was 

predicted in part (b). 

Note: The function sin−1 is of course the arcsin. We will use the sin−1 

notation since that is what is found on scientific calculators. 

 

Critical angle and total internal reflection. When light travels from a 

medium of higher index to one of lower index, we encounter some 

interesting results. Refer to Figure 1-9  where we see four rays of light 

originating from point O in the higher-index medium, each incident on 

the interface at a different angle of incidence. Ray 1 is incident on the 

interface at 90° (normal incidence) so there is no bending. 

 

 

 

 

Figure 1-9 Critical angle and total internal reflection 
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The light in this direction simply speeds up in the second medium (why?) 

but continues along the same direction. Ray 2 is incident at angle i and 

refracts (bends away from the normal) at angle r. Ray 3 is incident at the 

critical angle ic, large enough to cause the refracted ray bending away 

from the normal (N) to bend by 90°, thereby traveling along the interface 

between the two media. (This ray is trapped in the interface.) Ray 4 is 

incident on the interface at an angle greater than the critical angle, and is 

totally reflected into the same medium from which it came. Ray 4 obeys 

the law of reflection so that its angle of reflection is exactly equal to its 

angle of incidence. We exploit the phenomenon of total internal reflection 

when designing light propagation in fibers by trapping the light in the 

fiber through successive internal reflections along the fiber. We do this 

also when designing “retroreflecting” prisms. Compared with ordinary 

reflection from mirrors, the sharpness and brightness of totally internally 

reflected light beams is enhanced considerably. 

 

The calculation of the critical angle of incidence for any two optical 

media—whenever light is incident from the medium of higher index—is 

accomplished with Snell’s law. Referring to Ray 3 in Figure 3-10 and 

using Snell’s law in Equation 3-2 appropriately, we have 

ni sin ic = nr sin 90° 

 here ni is the index for the incident medium, ic is the critical angle of 

incidence, nr is the index for the medium of lower index, and r = 90° is 

the angle of refraction at the critical angle. Then, since sin 90° = 1, we 

obtain for the critical angle, equation 1-3 
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Let’s use this result and Snell’s law to determine the entrance cone for 

light rays incident on the face of a clad fiber if the light is to be trapped 

by total internal reflection at the core-cladding 

interface in the fiber. 

 

Example 2 

A step-index fiber 0.0025 inch in diameter has a core index of 1.53 and a 

cladding index of 1.39. See drawing. Such clad fibers are used frequently 

in applications involving communication, sensing, and imaging. 

 

 

What is the maximum acceptance angle θm for a cone of light rays 

incident on the fiber face such that the refracted ray in the core of the 

fiber is incident on the cladding at the critical angle? 

 

Solution: First find the critical angle θc in the core, at the core-cladding 

interface. Then, from geometry, identify θr and use Snell’s law to find 

θm. 

(1) From Equation 1-3, at the core-cladding interface 

 

 

 

(2) From right-triangle geometry, θr = 90 − 65.3 = 24.7° 

(3) From Snell’s law, at the fiber face, 
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Thus, the maximum acceptance angle is 39.7° and the acceptance cone is 

twice that, or 2 θm = 79.4°.The acceptance cone indicates that any light 

ray incident on the fiber face within the acceptance angle will undergo 

total internal reflection at the core-cladding face and remain trapped in 

the fiber. 
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CHAPTER TWO 

 

PRISM 
 

Refraction in prisms 

 

Glass prisms are often used to bend light in a given direction as well as to 

bend it back again (retroreflection). The process of refraction in prisms is 

understood easily with the use of light rays and Snell’s law. Look at 

Figure 1-10a. When a light ray enters a prism at one face and exits at 

another, the exiting ray is deviated from its original  direction. The prism 

shown is isosceles in   cross section with apex angle A = 30° and 

refractive index n = 1.50. The incident angle θ and the angle of deviation 

δ are shown on the diagram. 

 

Figure 1-10b shows how the angle of deviation δ changes as the angle θ 

of the incident ray changes. The specific curve shown is for the prism 

described in Figure 3-11a. Note that δ goes through a minimum value, 

about 23° for this specific prism. Each prism material has its own unique 

minimum angle of deviation. 

 

Figure 1-10 Refraction of light through a prism 
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Minimum angle of deviation. It turns out that we can determine the 

refractive index of a transparent material by shaping it in the form of an 

isosceles prism and then measuring its minimum angle of deviation. With 

reference to Figure 1-10a, the relationship between the refractive index n, 

the prism apex angle A, and the minimum angle of deviation δm is given 

by equation 1-4 

 

 

 

where both A and δm are measured in degrees. 

 

The derivation of Equation 1-4 is straightforward, but a bit tedious. 

Details of the derivation  making use of Snell’s law and geometric 

relations between angles at each refracting surface  can be found in most 

standard texts on geometrical optics. (See suggested references at the end   

of the module.) Let’s show how one can use Equation 3-4 in Example 4 

to determine the index  of refraction of an unknown glass shaped in the 

form of a prism 

 

Example 3 

A glass of unknown index of refraction is shaped in the form of an 

isosceles prism with an apex angle of 25°. In the laboratory, with the help 

of a laser beam and a prism table, the minimum angle     of deviation for 

this prism is measured carefully to be 15.8°. What is the refractive index 

of this glass material? 
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Solution: Given that δm = 15.8° and A = 25°, we use Equation 3-4 to 

calculate the refractive index. 

 

Dispersion of light.  

Table 1-1   lists indexes of refraction for various substances independent 

of the wavelength of the light. In fact, the refractive index is slightly 

wavelength dependent. For example, the index of refraction for flint glass 

is about 1% higher for blue light than for red light. The variation of 

refractive index n with wavelength λ is called dispersion. Figure 1-11a 

shows a normal dispersion curve of nλ versus λ for different types of 

optical glass.  Figure 1-11b shows the separation of the individual colors 

in white light—400 nm to 700 nm  after passing through a prism. Note 

that nλ decreases from short to long wavelengths, thus   causing the red 

light to be less deviated than the blue light as it passes through a prism. 

This type of dispersion that accounts for the colors seen in a rainbow, the 

“prism” there being the   individual raindrops. 

 

Figure 1-11 Typical dispersion curves and separation of white light after 

refraction by a prism 
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CHAPTER THREE 
 

MIRRORS 

 

IMAGE FORMATION WITH MIRRORS 

Mirrors, of course, are everywhere—in homes, auto headlamps, 

astronomical telescopes, and laser cavities, and many other places. Plane 

and spherical mirrors are used to form three dimensional      images of 

three-dimensional objects. If the size, orientation, and location of an 

object relative to a mirror are known, the law of reflection and ray tracing 

can be used to locate the image graphically. Appropriate mathematical 

formulas can also be used to calculate the locations and sizes of the 

images formed by mirrors. In this section we shall use both graphical ray 

tracing and formulas. 

 

plane mirrors 

Images with mirrors are formed when many nonparallel rays from a given 

point on a source are reflected from the mirror surface, converge, and 

form a corresponding image point. When this happens, point by point for 

an extended object, an image of the object, point by point, is formed. 

Image formation in a plane mirror is illustrated in several sketches shown 

in Figure 2-1 
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Figure 2-1 Image formation in a plane mirror 

 

In Figure 2-1a, point object S sends nonparallel rays toward a plane 

mirror, which reflects them as shown. The law of reflection ensures that 

pairs of triangles like SNP and S′NP are equal, so that all reflected rays 

appear to originate at the image point S′, which lies along the normal line 

SN, and at such depth that the image distance S′N equals the object 

distance SN. 

The eye sees a point image at S′ in exactly the same way it would see a 

real point object placed there. Since the actual rays do not exist below the 

mirror surface, the image is said to be a virtual image. The image S′ 

cannot be projected on a screen as in the case of a real image. An 

extended object, such as the arrow in Figure 3-14b, is imaged point by 

point by a plane mirror surface in similar fashion. Each object point has 

its image point along its normal to the mirror surface and as far below the 

reflecting surface as the object point lies above the surface. Note that 

image position does not depend on the position of the eye. 
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The construction in Figure 2-1b also makes clear that the image size is 

identical to the object  size, giving a magnification of unity. In addition, 

the transverse orientations of object and image are the same. A right-

handed object, however, appears left-handed in its image. In Figure 2-1c, 

where the mirror does not lie directly below the object, the mirror plane 

may be extended to determine the position of the image as seen by an eye 

positioned to receive reflected rays originating at the object. Figure 2-1d 

illustrates multiple images of a point object O formed by two 

perpendicular mirrors. Each image, I and I2, results from a single 

reflection in one of the  two mirrors, but a third image I3 is also present, 

formed by sequential reflections from both mirrors.  

 

spherical mirrors 

The law of reflection can be used to determine the direction along which 

any ray incident on a spherical mirror surface will be reflected. Using the 

law of reflection, we can trace rays from any point on an object to the 

mirror, and from there on to the corresponding image point. This is the 

method of graphical ray tracing. 

Graphical ray-trace method. To employ the method of ray tracing, we 

agree on the following: 

• Light will be incident on a mirror surface initially from the left. 

• The axis of symmetry normal to the mirror surface is its optical axis. 

• The point where the optical axis meets the mirror surface is the vertex. 

To locate an image we use two points common to each mirror surface, the 

center of curvature C and the focal point F. They are shown in Figure 2-

2, with the mirror vertex V, for both a concave and a convex spherical 

mirror. 
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(a) Concave mirror surface                                          (b) Convex mirror 

surface 

 

Figure 2-2 Defining points for concave and convex mirrors 

 

The edges of concave mirrors always bend toward the oncoming light. 

Such mirrors have their center of curvature C and focal point F located to 

the left of the vertex as seen in Figure 2-2a. The edges of convex mirrors 

always bend away from the oncoming light, and their center of   curvature 

C and focal point F are located to the right of the vertex. See Figure 2-2b. 

The important connection between parallel rays and the focal points for 

mirror surfaces is shown in Figure 2-3 a, b. Parallel rays are light rays 

coming from a very distant source (such as the sun) or from a collimated 

laser beam. The law of reflection, applied at each point on the mirror 

surface where a ray is incident, requires that the ray be reflected so as to 

pass through a focal point F in front of the mirror (Figure 2-3a) or be 

reflected to appear to come from a focal 

point F behind the mirror (Figure 2-3b). Notice that a line drawn from the 

center of curvature C to any point on the mirror is a normal line and thus 

bisects the angle between the incident and reflected rays. As long as the 

transverse dimension of the mirror is not too large, simple geometry 
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shows that the point F, for either mirror, is located at the midpoint 

between C and F, so that the distance FV is one-half the radius of 

curvature CV. The distance FV is called the focal length and is commonly 

labeled as f. 

 

 

Figure 2-3 Parallel rays and focal points 

 

Derivation of the mirror formula. The drawing we need to carry out the 

derivation is shown in Figure 2-4. The important quantities are the object 

distance p, the image distance q, and the radius of curvature r. Both p and 

q are measured relative to the mirror vertex, as shown, and the sign on r 

will indicate whether the mirror is concave or convex. All other quantities 

in Figure 2-4 are used in the derivation but will not show up in the final 

“mirror formula 

 

 

Figure 2-4 Basic drawing for deriving the mirror formula 
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The mirror shown in Figure 2-4  is convex with center of curvature C on 

the right. Two rays of light originating at object point O are drawn, one 

normal to the convex surface at its vertex V and the other an arbitrary ray 

incident at P. The first ray reflects back along itself; the second reflects at 

P as if incident on a plane tangent at P, according to the law of reflection. 

Relative to each other, the two reflected rays diverge as they leave the 

mirror. The intersection of the two rays (extended backward) determines 

the image point I corresponding to object point O. The image is virtual 

and located behind the mirror surface. Object and image distances 

measured from the vertex V are shown as p and q, respectively. A 

perpendicular of height h is drawn from P to the axis at Q. We seek a 

relationship between p and q that depends on only the radius of curvature 

r of the mirror. As we shall see, such a relation is possible only to a first-

order approximation of the sines and cosines of angles such as α and ϕ 

made by the object and image rays at various points on the spherical 

surface. This means that, in place of expansions of sin ϕ and cos ϕ in 

series as shown here, 

 

 

 

we consider the first terms only and write  

                           sin ϕ ≅ ϕ and cos ϕ ≅ 1, so that tan ϕ = sin ϕ/cos ϕ= ϕ 

 

These relations are accurate to 1% or less if the angle ϕ is 10° or smaller. 

This approximation leads to first-order (or Gaussian) optics, after Karl 

Friedrich Gauss, who in 1841 developed the   foundations of this subject. 
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Returning now to the problem at hand—that of relating p, q, and r  notice 

that two angular relationships may be obtained from Figure 2-4, because 

the exterior angle of a triangle equals the sum of its interior angles. Thus, 

θ = α + ϕ in ΔOPC and 2θ = α + α′ in ΔOPI 

which combine to give 

α − α′ = 2ϕ 

 

 

Using the small-angle approximation, the angles α, α′, and ϕ above can 

be replaced by their tangents, yielding 

 

 

Note that we have neglected the axial distance VQ, small when ϕ is 

small. Cancellation of h produces the desired relationship, equation (2-1) 

 

If the spherical surface is chosen to be concave instead, the center of 

curvature will be to the left. For certain positions of the object point O, it 

is then possible to find a real image point, also to the left of the mirror. In 

these cases, the resulting geometric relationship analogous to Equation 

(2-1) consists of the same terms, but with different algebraic signs, 

depending on the sign convention employed. We can choose a sign 

convention that leads to a single equation, the mirror equation, valid for 

both types of mirrors. It is Equation (2-2) 
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Sign convention.  

 

The sign convention to be used in conjunction with Equation 3-6 and 

Figure2-4 is as follows. 

• Object and image distances p and q are both positive when located to 

the left of the 

vertex and both negative when located to the right. 

• The radius of curvature r is positive when the center of curvature C is to 

the left of the vertex (concave mirror surface) and negative when C is to 

the right (convex mirror surface). 

• Vertical dimensions are positive above the optical axis and negative 

below. 

In the application of these rules, light is assumed to be directed initially, 

as we mentioned earlier, from left to right According to this sign 

convention, positive object and image distances correspond to real 

objects and images, and negative object and image distances correspond 

to virtual objects and images. Virtual objects occur only with a sequence 

of two or more reflecting or refracting elements. 

 

 Magnification of a mirror image. Figure 2-5 shows a drawing from 

which the magnification—ratio of image height hi to object height ho—

can be determined. Since angles θi,  θr, and α are equal, it follows that 

triangles VOP and VIP′ are similar. Thus, the sides of the two triangles 

are proportional and one can write 

 

 

This gives at once the magnification m to be 
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When the sign convention is taken into account, one has, for the general 

case, a single equation, Equation 2-3, valid for both convex and concave 

mirrors. 

 

If, after calculation, the value of m is positive, the image is erect. If the 

value is negative, the image is inverted. 

 

 

Figure 2-5 Construction for derivation of mirror magnification formula 
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Example 1 

A meter stick lies along the optical axis of a convex mirror of focal length 

40 cm, with its near end 60 cm from the mirror surface. Five-centimeter 

toy figures stand erect on both the near and far ends of the meter stick. (a) 

How long is the virtual image of the meter stick? (b) How tall are the toy 

figures in the image, and are they erect or inverted? 

 

 

Solution: Use the mirror equation 

 

 

twice, once for the near end and once for the far end of the meterstick. 

Use the magnification equation m for each figure 
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CHAPTER FOUR 

 

LENSES 
 

 
IMAGE FORMATION WITH LENSES 
 

Lenses are at the heart of many optical devices, not the least of which are 

cameras, microscopes, binoculars, and telescopes. Just as the law of 

reflection determines the imaging properties of mirrors, so Snell’s law of 

refraction determines the imaging properties of lenses. Lenses are 

essentially light-controlling elements, used primarily for image formation 

with visible light, but also for ultraviolet and infrared light. In this section 

we shall look first at the types and properties of lenses, then use graphical 

ray-tracing techniques to locate images, and finally use mathematical 

formulas to locate the size, orientation, and position of images in simple 

lens systems. 

 

A. Function of a lens 

A lens is made up of a transparent refracting medium, generally of some 

type of glass, with spherically shaped surfaces on the front and back. A 

ray incident on the lens refracts at the front surface (according to Snell’s 

law) propagates through the lens, and refracts again at the rear surface. 

Figure 3-1 shows a rather thick lens refracting rays from an object OP to 

form an image O′P′. The ray-tracing techniques and lens formulas we 

shall use here are based again on Gaussian optics, just as they were for 

mirrors. 
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Figure 3-1 Refraction of light rays by a lens 

 

As we have seen, Gaussian optics—sometimes called paraxial optics—

arises from the basic approximations sin ϕ ≅ φ, tan ϕ ≅ φ, and cos ϕ ≅ 

1. These approximations greatly simplify ray tracing and lens formulas, 

but they do restrict the angles the light rays make with the optical axis to 

rather small values of 20° or less. 

 

B. Types of lenses 

If the axial thickness of a lens is small compared with the radii of 

curvature of its surfaces, it can be treated as a thin lens. Ray-tracing 

techniques and lens formulas are relatively simple fo r thin lenses. If the 

thickness of a lens is not negligible compared with the radii of curvature 

of its faces, it must be treated as a thick lens. Ray-tracing techniques and 

lens-imaging formulas are more complicated for thick lenses, where 

computer programs are often developed to trace the rays through the 

lenses or make surface-by-surface calculations. In this basic introduction 

of geometrical optics, we shall deal with only thin lenses. 

 

1. Converging and diverging thin lenses.  

In Figure 3-2, we show the shapes of several common “thin” lenses. 

Even though a “thickness” is shown, the use of thin lenses assumes 
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that the rays simply refract at the front and rear faces without a 

translation through the lens medium. The first three lenses are thicker 

in the middle than at the edges and are described as converging or 

positive lenses. They are converging because they cause parallel rays 

passing through them to bend toward one another. Such lenses give 

rise to positive focal lengths. The last three lenses thinner in the 

middle than at the edges and are described as diverging or negative 

lenses. In contrast with converging lenses, they cause parallel rays 

passing through them to spread as they leave the lens. These lenses 

give rise to negative focal lengths. In Figure 3-2, names associated 

with the different shapes are noted. 

 

 

Figure 3-2 Shapes of common thin lenses 
 
 
 

2- Focal points of thin lenses.  

 

Just as for mirrors, the focal points of lenses are defined in terms of their 

effect on parallel light rays and plane wave fronts. Figure 3-22 shows 

parallel light rays and their associated plane wave fronts incident on a 

positive lens (Figure 3-3a) and a negative lens (Figure 3-3b). For the 

positive lens, refraction of the light brings it to focal point F (real image) 

to the right of the lens. For the negative lens, refraction of the light causes 

it to diverge as if it is coming from focal point F (virtual image) located 
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to the left of the lens. Note how the plane wave fronts are changed to 

converging spherical wave fronts by the positive lens and to diverging 

spherical wave fronts by the negative lens. This occurs because light 

travels more slowly in the lens medium than in the surrounding air, so the 

thicker parts of the lens retard the light more than do the thinner parts. 

 

 

Figure 3-3Focal points for positive and negative lenses 

 

 

Recall that, for mirrors, there is but a single focal point for each mirror 

surface since light remains always on the same side of the mirror. For thin 

lenses, there are two focal points, symmetrically located on each side of 

the lens, since light can approach from either side of the lens. The 

sketches in Figure 3-4 indicate the role that the two focal points play, for 

positive lenses (Figure 3-4a) and negative lenses (Figure 3-4b). Study 

these figures carefully. 
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Figure 3-4 Relationship of light rays to right and left focal points in thin 

lenses 

 

3- f-number and numerical aperture of a lens.  

The size of a lens determines its light gathering power and, consequently, 

the brightness of the image it forms. Two commonly used indicators of 

this special characteristic of a lens are called the f-number and the 

numerical aperture. The f-number, also referred to as the relative 

aperture and the f/stop, is defined simply as the ratio of the focal length f 

of the lens, to its diameter D, as given in Equation 3-1. 

 

f-number = f/D 

 

In addition, the numerical aperture is closely related to the acceptance 

angle discussed Since the rays entering the fiber face are in air, the 

numerical  aperture N.A. is equal simply to equation 3-2 

N.A. = sin α. 

It is shown in most basic books on optics (see references listed at end of 

this module) that image brightness is dependent on values of the f-number 
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or numerical aperture, in accordance with the following proportionalities: 

equation 3-3 

image brightness ∝ 1/( f-number)2 

image brightness ∝ (N.A.)2 

 

In summary, one can increase the light-gathering power of a lens and the 

brightness of the image formed by a lens by decreasing the f-number of 

the lens (increasing lens diameter) or by increasing the numerical 

aperture of the lens (increasing the refraction index and thus making 

possible a larger acceptance angle). 

 

C. Image location by ray tracing 

 

To locate the image of an object formed by a thin lens, we make use of 

three key points for the lens and associate each of them with a defining 

ray. The three points are the left focal point F, the right focal point F′, and 

the lens vertex (center) V. In Figure 3-5 the three rays are shown locating 

an image point P′ corresponding to a given object point P, for both a 

positive and a negative lens. The object is labeled OP and the 

corresponding image IP′. The defining rays are labeled to show clearly 

their connection to the points F, F′, and V. In practice, of course, only  

two of the three rays are needed to locate the desired image point. Note 

also that the location of image point P′ is generally sufficient to sketch in 

the rest of the image IP′, to correspond with   the given object OP. 
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Figure 3-5 Ray diagrams for image formation by positive and negative lenses 

 

 

The behavior of rays 1 and 2—connected with the left and right focal 

points for both the positive and negative lenses—should be apparent from 

another look at Figure 3-3. The behavior of ray 3—going straight through 

the lens at its center V—is a consequence of assuming that the lens has 

zero thickness. Note, in fact, that, for both Figures 3-3 and 3-5, all the 

bending is assumed to take place at the dashed vertical line that splits the 

drawn lenses in half. Also, it should be clear in Figure 3-5 that the 

positive lens forms a real image while the negative lens forms a virtual 

image. 

 

D. Lens formulas for thin lenses 

As with mirrors, convenient formulas can be used to locate the image 

mathematically. The derivation of such formulas—as was carried out for 

spherical mirrors in the previous section can be found in most texts on 

geometrical optics. The derivation essentially traces an arbitrary ray 

geometrically and mathematically from an object point through the two 

surfaces of a thin lens to the corresponding image point. Snell’s law is 

applied for the ray at each spherical refracting surface. The details of the 
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derivation involve the geometry of triangles and the approximations 

mentioned earlier—sin ϕ ≅ φ, tan ϕ ≅ φ, and cos ϕ ≅ 1—to simplify the 

final results. Figure 3-6 shows the essential elements that show up in the 

final equations, relating object distance p to image distance q, for a lens 

of focal length f with radii of curvature r1 and r2 and refractive index ng. 

For generality, the lens is shown situated in an arbitrary medium of 

refractive index n. If the medium is air, then, of course, n = 1. 

 

 

 

Figure 3-6 Defining quantities for image formation with a thin lens 

 
 

1. Equations for thin lens calculations. The thin lens equation is given 

by Equation 3-4. 

 

where p is the object distance (from object to lens vertex V) 

q is the image distance (from image to lens vertex V) 

and f is the focal length (from either focal point F or F′ to the lens vertex  

V. For a lens of refractive index ng situated in a medium of refractive 

index n, the relationship between the parameters n, ng, r1, r2 and the 

focal length f is given by the lensmaker’s equation in Equation 3-5. 
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where n is the index of refraction of the surrounding medium 

ng is the index of refraction of the lens materials 

r1 is the radius of curvature of the front face of the lens 

r2 is the radius of curvature of the rear face of the lens 

 

The magnification m produced by a thin lens is given in Equation 3-6 

 

 

where m is the magnification (ratio of image size to object size) 

hi is the transverse size of the image 

ho is the transverse size of the object 

p and q are object and image distance respectively 

 

 

2-Sign convention for thin lens formulas.  

Just as for mirrors, we must agree on a sign convention to be used in the 

application of Equations 3-4, 3-5, and 3-6. It is: 

• Light travels initially from left to right toward the lens. 

• Object distance p is positive for real objects located to the left of the 

lens and negative for virtual objects located to the right of the lens. 

• Image distance q is positive for real images formed to the right of the 

lens and negative for virtual images formed to the left of the lens. 

• The focal length f is positive for a converging lens, negative for a 

diverging lens. 

• The radius of curvature r is positive for a convex surface, negative for a 

concave surface. 
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• Transverse distances (ho and hi) are positive above the optical axis, 

negative below. 

Now let’s apply Equations 3-4, 3-5, and 3-6 in several examples, where 

the use of the sign convention is illustrated and where the size, 

orientation, and location of a final image are determined. 

 

Example 1 

A double-convex thin lens such as that shown in Figure 3-21 can be used 

as a simple “magnifier.” It has a front surface with a radius of curvature 

of 20 cm and a rear surface with a radius of curvature of 15 cm. The lens 

material has a refractive index of 1.52. Answer the following questions to 

learn more about this simple magnifying lens. 

(a) What is its focal length in air? 

(b) What is its focal length in water (n = 1.33)? 

(c) Does it matter which lens face is turned toward the light? 

(d) How far would you hold an index card from this lens to form a sharp 

image of the sun on 

the card? 

 

Solution: 

(a) Use the lensmaker’s equation. With the sign convention given, we 

have ng = 1.52, n = 

1.00, r1 = +20 cm, and r2 = − 15 cm. Then 

 

So f = +16.5 cm (a converging lens, so the sign is positive, as it should 

be) 
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f = 60 cm (converging but less so than in air) 

 

(c) No, the magnifying lens behaves the same, having the same focal 

length, no matter which surface faces the light. You can prove this by 

reversing the lens and repeating the calculation with Equation 3-5. 

Results are the same. But note carefully, reversing a thick lens changes 

its effect on the light passing through it. The two orientations are not 

equivalent. 

 

(d) Since the sun is very far away, its light is collimated (parallel rays) as 

it strikes the lens and will come to a focus at the lens focal point. Thus, 

one should hold the lens about 16.5 cm from the index card to form a 

sharp image on the card. 

 

Example 2 

A two-lens system is made up of a converging lens followed by a 

diverging lens, each of focal length 15 cm. The system is used to form an 

image of a short nail, 1.5 cm high, standing erect, 25 cm from the first 

lens. The two lenses are separated by a distance of 60 cm. See 

accompanying diagram.  Locate the final image, determine its size, and 

state whether it is real or virtual, erect or inverted. 

 

 

 

Solution: We apply the thin lens equations to each lens in turn, making 

use of the correct sign convention at each step. 
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Since the first image, a distance q1 from L1, serves as the object for the 

lens L2, this object is to the left of lens L2, and thus its distance p2 is 

positive. The focal length for L2 is negative since it is a diverging lens. 

So, the thin lens equation becomes 

 

Since q2 is negative, it locates a virtual image, 9 cm to the left of lens L2.  

The overall magnification for the two-lens system is given by the 

combined magnification of the 

lenses. Then 

 

Thus, the final image is inverted (since overall magnification is negative) 

and is of final size 

(0.6 × 1.5 cm) = 0.9 cm. 
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Exercises and Problems 

 
1. Use the law of reflection to determine the (a) minimum height and (b) 

position for a plane mirror that just allows a 5'6" woman standing on the 

floor in front of the mirror to see both her head and feet in the mirror. See 

sketch. 

 

 

 

2. White light contains all wavelengths from deep blue at 400 nm to deep 

red at 700nm. A narrow beam of collimated white light is sent through a 

prism of apex angle 20° as shown. The prism is made of light flint glass 

whose refractive index at 400 nm is 1.60 and at 700 nm is 1.565. What is 

the angular spread between the red and blue light at the minimum angle 

of deviation for each? 

 

 

3.A ray of sodium light at 589 nm is incident on a rectangular slab of 

crown glass at an angle of 45° with the normal. (a) At what angle to the 

normal does this ray exit the slab? (b) What is the direction of the exiting 
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ray relative to the entering ray? (c)  Sketch an accurate trace of the ray 

through the slab. 

 

 

4. An object 3 cm high is placed 20 cm to the left of (a) a convex and (b) 

a concave spherical mirror, each of focal length 10 cm. Determine the 

position and nature of the image for each mirror. 

 

5. Make a ray-trace diagram—on an 8½" × 11" sheet of white paper—

that locates the image of a 2-cm object placed 10 cm in front of a concave 

spherical mirror of curvature 6 cm. Make your drawing to scale. Where is 

the image located and what are its orientation and its size? Repeat this for 

a convex spherical mirror of the same curvature. 

 

6. A fish in a lake looks up at the  surface of the water. At what distance d 

along the surface, measured from the normal, is a water-skimming insect 

safe from the roving eye of the fish? 

 

7. What is the light cone acceptance angle for an optical fiber of diameter 

100 μ, located in air, having a plastic core of index 1.49 and a plastic 

cladding of index 1.39? Make a sketch of the fiber, showing a limiting 
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ray along the surface of the acceptance cone entering the fiber and 

refracting appropriately. 

8. A laser beam is incident on the end face of a cylindrical rod of material 

as shown in the sketch. The refractive index of the rod is 1.49. How many 

internal reflections does the laser beam experience before it exits the rod? 

 

 

 

9. A thin, double-convex lens has a refractive index of 1.50. The radius of 

curvature of the front surface is 15 cm and that of the rear surface is 10 

cm. See sketch. (a) How far from the lens would an image of the sun be 

formed? (b) How far from the lens would an image of a toy figure 24 cm 

from the lens be formed? (c) How do the answers to (a) and (b) change if 

you flip the lens over? 

 

 

 

 

10. The object shown in the accompanying sketch is midway between the 

lens and the mirror. The radius of curvature of the mirror is 20 cm. The 

concave lens has a focal length of 16.7 cm. (a) Where is the light that 

travels first to the mirror and then to the lens finally imaged? (b) Where is 

the light finally imaged that travels first to the lens? (Note: Be especially 

careful of applying the sign convention!) 
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11. A ray of light makes an angle of incidence of 45° at the center of one 

face of a transparent cube of refractive index 1.414. Trace the ray through 

the cube, providing backup calculations to support your answer. 

 

12. Two positive thin lenses, each of focal length f = 3 cm, are separated 

by a distance of 12 cm. An object 2 cm high is located 6 cm to the left of 

the first lens. See sketch. On an 8½" × 11" sheet of paper, make a 

drawing of the two-lens system, to scale.  

(a) Use ray-tracing techniques to locate the final image and describe its 

size and nature.  

(b) Use  the thin-lens equation to locate the position and size of the final 

image. How well do your results for (a) and (b) agree? 
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CHAPTER Five 

 

Optical Aberration 

 

An optical aberration is a departure of the performance of an optical 

system from the predictions of paraxial optics.[1] In an imaging system, it 

occurs when light from one point of an object does not converge into (or 

does not diverge from) a single point after transmission through the 

system. Aberrations occur because the simple paraxial theory is not a 

completely accurate model of the effect of an optical system on light (due 

to the wave nature of light), rather than due to flaws in the optical 

elements.  

Aberration leads to blurring of the image produced by an image-forming 

optical system. Makers of optical instruments need to correct optical 

systems to compensate for aberration. 

1-Monochromatic aberration[ 

 

The elementary theory of optical systems leads to the theorem: Rays of 

light proceeding from any object point unite in an image point; and 

therefore an object space is reproduced in an image space. The 

introduction of simple auxiliary terms, due to C. F. Gauss (Dioptrische 

Untersuchungen, Göttingen, 1841), named the focal lengths and focal 

planes, permits the determination of the image of any object for any 

system (see lens). The Gaussian theory, however, is only true so long as 

the angles made by all rays with the optical axis (the symmetrical axis of 

the system) are infinitely small, i.e. with infinitesimal objects, images and 

https://en.wikipedia.org/wiki/Optical_system
https://en.wikipedia.org/wiki/Optical_system
https://en.wikipedia.org/wiki/Paraxial_optics
https://en.wikipedia.org/wiki/Optical_aberration#cite_note-ref1-1
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Optical_instruments
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Focal_length
https://en.wikipedia.org/wiki/Focal_plane
https://en.wikipedia.org/wiki/Focal_plane
https://en.wikipedia.org/wiki/Lens_(optics)
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lenses; in practice these conditions may not be realized, and the images 

projected by uncorrected systems are, in general, ill-defined and often 

completely blurred, if the aperture or field of view exceeds certain limits. 

The investigations of James Clerk Maxwell (Phil.Mag., 1856; Quart. 

Journ. Math., 1858) and Ernst Abbe[3] showed that the properties of these 

reproductions, i.e. the relative position and magnitude of the images, are 

not special properties of optical systems, but necessary consequences of 

the supposition (in Abbe) of the reproduction of all points of a space in 

image points (Maxwell assumes a less general hypothesis), and are 

independent of the manner in which the reproduction is effected. These 

authors proved, however, that no optical system can justify these 

suppositions, since they are contradictory to the fundamental laws of 

reflection and refraction. Consequently, the Gaussian theory only supplies 

a convenient method of approximating to reality; and no constructor 

would attempt to realize this unattainable ideal. At present, all that can be 

attempted is to reproduce a single plane in another plane; but even this 

has not been altogether satisfactorily accomplished: aberrations always 

occur, and it is improbable that these will ever be entirely corrected. 

Ta-Spherical aberration is an optical effect observed in an optical 

device (lens, mirror, etc.) that occurs due to the increased refraction of 

light rays when they strike a lens or a reflection of light rays when they 

strike a mirror near its edge, in comparison with those that strike nearer 

the centre. It signifies a deviation of the device from the norm, i.e., it 

results in an imperfection of the produced image. 

https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Ernst_Abbe
https://en.wikipedia.org/wiki/Ernst_Abbe
https://en.wikipedia.org/wiki/Optical_device
https://en.wikipedia.org/wiki/Optical_device
https://en.wikipedia.org/wiki/Lens_(optics)
https://en.wikipedia.org/wiki/Mirror
https://en.wikipedia.org/wiki/Refraction
https://en.wikipedia.org/wiki/Reflection_(physics)
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On top is a depiction of a perfect lens without spherical aberration: all 

incoming rays are focused in the focal point. 

 

The bottom example depicts a real lens with spherical surfaces, which 

produces spherical aberration: The different rays do not meet after the 

lens in one focal point. The further the rays are from the optical axis, the 

closer to the lens they intersect the optical axis (positive spherical 

aberration). 

 

A spherical lens has an aplanatic point (i.e., no spherical aberration) only 

at a radius that equals the radius of the sphere divided by the index of 

refraction of the lens material. A typical value of refractive index for 

crown glass is 1.5 (see list), which indicates that only about 43% of the 

area (67% of diameter) of a spherical lens is useful. It is often considered 

to be an imperfection of telescopes and other instruments which makes 

their focusingless than ideal due to the spherical shape of lenses and 

mirrors. This is an important effect, because spherical shapes are much 

easier to produce than aspherical ones. In many cases, it is cheaper to use 

https://en.wikipedia.org/wiki/Focus_(optics)
https://en.wikipedia.org/wiki/Optical_axis
https://en.wikipedia.org/wiki/Optical_aberration#Aberration_of_elements.2C_i.e._smallest_objects_at_right_angles_to_the_axis
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Telescope
https://en.wikipedia.org/wiki/Focus_(optics)
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/File:Spherical_aberration_2.svg
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multiple spherical elements to compensate for spherical aberration than it 

is to use a singleaspheric lens. 

"Positive" spherical aberration means peripheral rays are bent too much. 

"Negative" spherical aberration means peripheral rays are not bent 

enough. 

The effect is proportional to the fourth power of the diameter and 

inversely proportional to the third power of the focal length, so it is much 

more pronounced at short focal ratios, i.e., "fast" lenses. 

 

 

 

Longitudinal sections through a focused beam with negative (top row), 

zero (middle row), and positive spherical aberration (bottom row). The 

lens is to the left. 

In lens systems, the effect can be minimized using special combinations 

of convex and concave lenses, as well as using aspheric lenses or 

aplanatic lenses. 

https://en.wikipedia.org/wiki/Aspheric_lens
https://en.wikipedia.org/wiki/Focal_ratio
https://en.wikipedia.org/wiki/Lens_(optics)#Types_of_simple_lenses
https://en.wikipedia.org/wiki/Lens_(optics)#Types_of_simple_lenses
https://en.wikipedia.org/wiki/Aspheric_lens
https://en.wikipedia.org/wiki/File:Spherical-aberration-slice.jpg
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For simple designs one can sometimes calculate parameters that minimize 

spherical aberration. For example, in a design consisting of a single lens 

with spherical surfaces and a given object distance o, image distance i, 

and refractive index n, one can minimize spherical aberration by 

adjusting the radii of curvature  and  of the front and back 

surfaces of the lens such that 

 

 

 

A point source as imaged by a system with negative (top row), zero 

(middle row), and positive spherical aberration (bottom row). The 

middle column shows the focused image, columns to the left shows 

defocusing toward the inside, and columns to the right show 

defocusing toward the outside. 

For small telescopes using spherical mirrors with focal ratios shorter 

than f/10, light from a distant point source (such as a star) is not all 

focused at the same point. Particularly, light striking the inner part of 

the mirror focuses farther from the mirror than light striking the outer 

part. As a result the image cannot be focused as sharply as if the 

aberration were not present. Because of spherical aberration, 

telescopes shorter than f/10 are usually made with non-spherical 

mirrors or with correcting lenses. 

https://en.wikipedia.org/wiki/Point_source
https://en.wikipedia.org/wiki/Focal_ratio
https://en.wikipedia.org/wiki/Star
https://en.wikipedia.org/wiki/File:Spherical-aberration-disk.jpg
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b-Astigmatism is one where rays that propagate in two 

perpendicular planes have different foci. If an optical system with 

astigmatism is used to form an image of a cross, the vertical and 

horizontal lines will be in sharp focus at two different distances. The term 

comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a 

mark, spot, puncture 

 

Visual astigmatism (not optical) 

There are two distinct forms of astigmatism. The first is a third-

order aberration, which occurs for objects (or parts of objects) away from 

the optical axis. This form of aberration occurs even when the optical 

system is perfectly symmetrical. This is often referred to as a 

"monochromatic aberration", because it occurs even for light of a 

single wavelength. This terminology may be misleading, however, as 

the amount of aberration can vary strongly with wavelength in an optical 

system. 

The second form of astigmatism occurs when the optical system is not 

symmetric about the optical axis. This may be by design (as in the case of 

a cylindrical lens), or due to manufacturing error in the surfaces of the 

components or misalignment of the components. In this case, astigmatism 

is observed even for rays from on-axis object points. This form of 

astigmatism is extremely important in vision science and eye care, since 

the human eye often exhibits this aberration due to imperfections in the 

shape of thecornea or the lens. 

https://en.wikipedia.org/wiki/Ray_(optics)
https://en.wikipedia.org/wiki/Plane_(mathematics)
https://en.wikipedia.org/wiki/Focus_(optics)
https://en.wikipedia.org/wiki/Cross
https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/Aberration_in_optical_systems
https://en.wikipedia.org/wiki/Optical_axis
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Cylinder_(geometry)
https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Cornea
https://en.wikipedia.org/wiki/Lens_(anatomy)
https://en.wikipedia.org/wiki/File:Astigmatism.svg
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c-Coma, or comatic aberration: in an optical system refers 

to aberration inherent to certain optical designs or due to imperfection in 

the lens or other components that results in off-axis point sources such as 

stars appearing distorted, appearing to have a tail (coma) like a comet. 

Specifically, coma is defined as a variation in magnification over 

the entrance pupil. In refractive or diffractive optical systems, especially 

those imaging a wide spectral range, coma can be a function 

of wavelength, in which case it is a form of chromatic aberration. 

Coma is an inherent property of telescopes using parabolic mirrors. 

Unlike a spherical mirror, a bundle of parallel rays parallel to the optical 

axis will be perfectly focused to a point (the mirror is free of spherical 

aberration), no matter where they strike the mirror. However, this is only 

true if the rays are parallel to the axis of the parabola. When the incoming 

rays strike the mirror at an angle, individual rays are not reflected to the 

same point. When looking at a point that is not perfectly aligned with the 

optical axis, some of the incoming light from that point will strike the 

mirror at an angle. This results in an image that is not in the center of the 

field looking wedge-shaped. The further off-axis (or the greater the angle 

subtended by the point with the optical axis), the worse this effect is. This 

causes stars to appear to have a cometary coma, hence the name.[1] 

Schemes to reduce spherical aberration without introducing coma 

include Schmidt, Maksutov, ACF and Ritchey-Chrétien optical systems. 

Correction lenses, "coma correctors" for Newtonian reflectors have been 

designed which reduce coma in telescopes below f/6. These work by 

means of a dual lens system of a plano-convex and a plano-concave lens 

fitted into an eyepiece adaptor which superficially resembles a Barlow 

lens.[1][2] 
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Coma of a single lens or a system of lenses can be minimized (and in 

some cases eliminated) by choosing the curvature of the lens surfaces to 

match the application. Lenses in which both spherical aberration and 

coma are minimized at a single wavelength are 

called bestform or aplanatic lenses. 

Vertical coma is the most common higher-order aberration in the eyes of 

patients with keratoconus.[3] Coma is also a common temporary symptom 

of corneal injuries or abrasions, in which case the visual defect gradually 

resolves as the cornea heals. 

 

 

Coma of a single lens 

 

d-Distortion is a deviation from rectilinear projection, a projection in 

which straight lines in a scene remain straight in an image. It is a form 

of optical aberration. 

Although distortion can be irregular or follow many patterns, the most 

commonly encountered distortions are radially symmetric, or 

approximately so, arising from the symmetry of a photographic lens. 

These radial distortions can usually be classified as 

either barreldistortions or pincushion distortions. See van Walree.[1] 
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Barrel 

 

In barrel distortion, image magnification decreases with 

distance from the optical axis. The apparent effect is that of 

an image which has been mapped around 

asphere (or barrel). Fisheye lenses, which take 

hemispherical views, utilize this type of distortion as a way 

to map an infinitely wide object plane into a finite image 

area. In a zoom lens barrel distortion appears in the middle 

of the lens's focal length range and is worst at the wide-

angle end of the range.[2] 

 

Pincushion  

In pincushion distortion, image magnification increases 

with the distance from the optical axis. The visible effect is 

that lines that do not go through the centre of the image are 

bowed inwards, towards the centre of the image, like 

a pincushion. 

 

 

Mustache  

A mixture of both types, sometimes referred to as mustache 

distortion (moustache distortion) or complex distortion, is 

less common but not rare. It starts out as barrel distortion 

close to the image center and gradually turns into 

pincushion distortion towards the image periphery, making 

horizontal lines in the top half of the frame look like 

a handlebar mustache 
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e-Petzval field curvature, named for Joseph Petzval,[1] describes 

the optical aberration in which a flat object normal to the optical axis (or 

a non-flat object past the hyperfocal distance) cannot be brought properly 

into focus on a flat image plane Consider an "ideal" single-element lens 

system for which all planar wave fronts are focused to a point at 

distance f from the lens. Placing this lens the distance f from a flat image 

sensor, image points near the optical axis will be in perfect focus, but rays 

off axis will come into focus before the image sensor, dropping off by the 

cosine of the angle they make with the optical axis. This is less of a 

problem when the imaging surface is spherical, as in the human eye. 

Most current photographic lenses are designed to minimize field 

curvature, and so effectively have a focal length that increases with ray 

angle. The Petzval lens is one design which has significant amount of 

field curvature, images taken with the lens are very sharp in the centre, 

but at greater angles the image is out of focus. Film cameras, may be able 

to bend their image planes to compensate, particularly when the lens is 

fixed and known. This also includes plate film, which could still be bent 

slightly. Digital sensors are difficult to bend, although experimental 

products have been produced.[2] By 2016 the only consumer cameras 

featuring curved sensors were "selfie" Sony Cybershot KW-1 and KW-

11. Large mosaics of sensors (necessary anyway due to limited chip 

sizes) can be shaped to simulate a bend over larger scales.[citation needed] 
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2- Chromatic Aberration 

There are two types of chromatic aberration: axial (longitudinal), 

and transverse (lateral). Axial aberration occurs when different 

wavelengths of light are focused at different distances from the lens, i.e., 

different points on the optical axis (focus shift). Transverse aberration 

occurs when different wavelengths are focused at different positions in 

the focal plane (because the magnification and/ordistortion of the lens 

also varies with wavelength; indicated in graphs as (change in) 

focus length). The acronym LCA is used, but ambiguous, and may refer 

to either longitudinal or lateral CA; for clarity, this article uses "axial" 

(shift in the direction of the optical axis) and "transverse" (shift 

perpendicular to the optical axis, in the plane of the sensor or film).[2] 

These two types have different characteristics, and may occur together. 

Axial CA occurs throughout the image and is specified by optical 

engineers, optometrists, and vision scientists in the unit of focus known 

widely as diopters,[4] and is reduced by stopping down. (This 

increases depth of field, so though the different wavelengths focus at 

different distances, they are still in acceptable focus.) Transverse CA does 

not occur in the center, and increases towards the edge, but is not affected 

by stopping down. 

In digital sensors, axial CA results in the red and blue planes being 

defocused (assuming that the green plane is in focus), which is relatively 

difficult to remedy in post-processing, while transverse CA results in the 

red, green, and blue planes being at different magnifications 

(magnification changing along radii, as in geometric distortion), and can 

be corrected by radially scaling the planes appropriately so they line up. 
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Chromatic correction of visible and near infrared wavelengths. Horizontal 

axis shows degree of aberration, 0 is no aberration. Lenses: 1: simple, 2: 

achromatic doublet, 3: apochromatic and 4: superachromat. 

In the earliest uses of lenses, chromatic aberration was reduced by 

increasing the focal length of the lens where possible. For example, this 

could result in extremely long telescopes such as the very long aerial 

telescopes of the 17th century. Isaac Newton's theories about white 

light being composed of a spectrum of colors led him to the conclusion 

that uneven refraction of light caused chromatic aberration (leading him 

to build the first reflecting telescope, his Newtonian telescope, in 1668[5]). 

There exists a point called the circle of least confusion, where chromatic 

aberration can be minimized.[6] It can be further minimized by using 

an achromatic lens or achromat, in which materials with differing 

dispersion are assembled together to form a compound lens. The most 

common type is an achromatic doublet, with elements made 

of crown and flint glass. This reduces the amount of chromatic aberration 

over a certain range of wavelengths, though it does not produce perfect 

correction. By combining more than two lenses of different composition, 

the degree of correction can be further increased, as seen in 
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an apochromatic lens orapochromat. Note that "achromat" and 

"apochromat" refer to the type of correction (2 or 3 wavelengths correctly 

focused), not thedegree (how defocused the other wavelengths are), and 

an achromat made with sufficiently low dispersion glass can yield 

significantly better correction than an achromat made with more 

conventional glass. Similarly, the benefit of apochromats is not simply 

that they focus 3 wavelengths sharply, but that their error on other 

wavelength is also quite small.[7] 

Many types of glass have been developed to reduce chromatic aberration. 

These are low dispersion glass, most notably, glasses containing fluorite. 

These hybridized glasses have a very low level of optical dispersion; only 

two compiled lenses made of these substances can yield a high level of 

correction.[8] 

The use of achromats was an important step in the development of 

the optical microscope and in telescopes. 

An alternative to achromatic doublets is the use of diffractive optical 

elements. Diffractive optical elements are able to generate arbitrary 

complex wave fronts from a sample of optical material which is 

essentially flat.[9] Diffractive optical elements have negative dispersion 

characteristics, complementary to the positive Abbe numbers of optical 

glasses and plastics. Specifically, in the visible part of the spectrum 

diffractives have a negative Abbe number of −3.5. Diffractive optical 

elements can be fabricated using diamond turningtechniques.[10] 
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Chromatic aberration of a single lens causes different wavelengths of 

light to have differing focal lengths 

 

Diffractive optical element with complementary dispersion properties to 

that of glass can be used to correct for color aberration 

 

For an achromatic doublet, visible wavelengths have approximately the 

same focal length 
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